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S U M M A R Y  
Improved sufficient conditions are derived for the exponential stability of a nonlinear time varying feedback system 
having a time invariant block G in the for'~ard path and a nonlinear time varying gain ~p(. ) k(t) in the feedback path. 

~b(. ) being an odd monotone nondecreasing function. The resulting bound on ~ k is less restrictive than earlier 

criteria. 

1. Introduction 

Consider  a feedback system (Fig. 1) governed by  the nonl inear  differential equat ion 

p(D)y+k( t ) (o (q(D)y)  = 0 on the interval [to, oo),  (t) 

where p(D) = D" + p ,_  1D"- 1 + . . .  + Po , 

q(D) = qmDm + qm_ l D m-1 + ... + qo 

are cons tant  coefficient differential opera tors  with the order  n of p(D) at least one  higher  than 
the order  m of  q (D). 

Let  y = xl ,  x2 - dx l /d t  . . . .  , x ,  = dx ,_  1/dt ; and x = col [x l ,  Xz . . . . .  x , ] .  Then  (1) can be wri t ten 
as the vector  differential equat ion 

dx 
a t  = A~ x -  k (t) b 4) (c' x) (2) 

~= f(x, t) 
(In the figure, a = q ( D ) y = c ' x ) .  

) _l G(s) 

Linear time invariant stable 
o-" ( t )  = q (D)y  

O ( s )  - q (  s ) 
p(s) 

k ( t )  ~(q(D)y) onlinear memoryless 

I kCt) 

Figure 1. A time varying feedback system. 

= c" ( s I - A )  -1 b 
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where A o is a stable matrix having the form 

0 0  0 

0 1 0 ... 0 

A 1  = . . . .  ~  ' 

0 0 0 1 

- P o  - P l  --P2 -P3  ..- -Pn-1  

and b, c are vectors given by 
b = col [0, 0, ..., 1] 
c = col [ - q o ,  - q l  . . . .  , - q  . . . . . .  0]. 

The gain k(t) is assumed to be absolutely continuous on the interval [to, ~ ) ;  q$(. ) is a real 
valued function on ( - ~ ,  + ~ ) w i t h  the following properties: (i)q$(0)=0; (ii)q$(. ) i s  odd 
monotone nondecreasing, i.e., (a 1 - a2)(q$ ( a l ) -  ~b(a2)) --- 0 for all tr~ and a2, and q$(a) = - q$(- a) 
for all a ~ 0 ;  and there exist constants ql, q2 > 0  (with ql < q2) such that q~a2< ~(a)a< q2 a2 
for all a # 0. The class of such functions is denoted by Jff. The equation (1) or (2) with the above 
specifications is simply designated, for convenience, as system (1). Let G(s) be the transfer 
function of the forward block, i.e., G (s)= q (s)/p (s). 

Assumption: The null solution of (1) is asymptotically stable for every constant function 
k( t )=K in [0, ~ )  when the system is linear, that is, cb(a)-a. 

Problem: Find conditions for the exponential stability* of the system (1) for every (absolutely) 
continuous function k(t) with values in [0, ~) .  

The problem of stability of feedback systems with a time varying nonlinearity was initially 
considered by Zames [1]. Stability conditions in terms of certain positive real functions and 
a certain upper bound on the rate of variation of k(t) were derived by Narendra and Taylor 
[2], the author [3a] and many others. More general conditions (in terms of n0ncausal and 
causal multiplier functions) are due to the author [3b]. However, these criteria are not necessary 
for stability, and weaker conditions may be possible. 

2. Main results 

In the present work, there are two improvements over the existing criteria: 
(1) The multiplier is a general positive real function (but with a certain time domain con- 

' straint); 
(dk/k  

(2) The restriction on \ d t / J  is considerably weakened. 

However, the main contribution is believed to be Lemma 2 which may be of independent 
interest. It should be possible, using Lemma 2, to derive frequency power formulas more 
general than those of Skoog and Willems [-4]. 

The following'notation will be used: [Ixll denotes the norm of x where IIxll 2 =x'x  (prime 
denotes transpose); x o denotes x(to); x(t;  to, Xo) denotes the solution of (2) which takes the 
value x o for t=to. 

Definition 1 : The null solution of (2) is said to be exponentially stable if there exist positive 
constants ei, e2, such that, for all t > to, 

IIx(t; to, xo)ll _-_ ~llxoll exp[--el(t--to)] �9 

Definition 2: A complex-valued function Z(s) of a complex variable s is called a positive real 
function of  the argument s, if Z (s) is real for real values of  s, and for Re s > 0, (where 'Re' denotes 
the real part) is analytic and satisfies the inequality 

Re Z (s) _-> 0.  
�9 See definition below. 
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Let Z(s)=m(s)/n(s) where re(s)and n(s) are finite polynomials in s; O(t) ~ - (dk /k'] \ d r ~  / ; a super- 

script + on a time function denotes the positive values of that function. Further, let Z(s )=  
1 + Z 1 (s) with z 1 (t), the inverse transform of Z1 (s), zero Ior t <  0; and finally 

{; / = s u p  (3) 
a 0 

Note  that 0 < 6s__ 1 for q~ (.) e Y .  
The main result of the paper is the following. 

Theorem 1. The system (1) is exponentially stable i f  there exists a positive real function z(S) ~- 
m(s)/n(s)= l + Z l ( s ) ,  with Zl( t )=0 J:br t< O, such that 
(a) Z ( s - f l ) G ( s - f l )  is positive real for some fl >_0, and m ( s - f l ) q ( s - f l ) ,  n ( s - f l ) p ( s - f l )  have 

no imaginary zeros; 
(b) for some 7 > O, 

f o  ert ]zl(t)ldt< 1/(1-t-6~-t5,) 

with 6s, fii as defined in (3), (4) respectively; 
(c) for c~ = max 7 of  hypothesis (b), 

(i) rl < M <  oo for allfinite T > 0  ," 

(ii) lim (to+ r (0 (z)+ 2 f l -  c~) + dr < 2 f l -  v for some v > 0 .  
T--* ao" .Jto 

The proof  of the theorem is somewhat involved and is given at the end, after a series oflemmas 
which are similar to those found in the author's paper [3c]. 

3. Some preliminary results 

Lemma 1. I f  the system o f t  1 th order described by 

p (D) n (D) y + k (t) q~ (q (D) n (D)y = 0 (5) 

is exponentially stable and n (D)w = 0 represents an asymptotically stable system, then system 1 
is also exponentially stable. 

Proof. If x* (t) is any solution, x* (t) the corresponding solution vector of (5), then n(D)x* (t) 
(or, more precisely, a subvector of n (D)x* (t)) is a solution vector of (1). Further, if l[ x* (t)l[ ~ 0 
exponentially, each component of x*(t)--.O exponentially, and hence IIn(D)x* (t)ll--,0 ex- 
ponentially. Therefore system (1) is exponentially stable. Q.E.D. 

Let u (t) denote a state vector of the differential equation 

m (D) q (D) u + n (D) p (D) u = 0 .  (6) 

Note  that the order of (6) is q. From the positive realness of Z ( s -  fl) G ( s -  fl) for some fl __> 0, 
the system represented by (6) is asymptotically stable. Define 

r(s) = { E v m ( s - - f l ) q ( s - f l ) n ( - s - f l ) p ( - - s - f l )  }(-) 

where Ev denotes "even part of" and the superscript ( - )  stands for the negative spectral factor 
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of the even polynomial inside the brackets. Then we can define the following positive definite 
function quadratic in u : 

f t(u) Ia(u , t) = {[m(D-fl)q(D-fl)(uea~)][n(D-fi)p(D--fl)(uJ~)]-[rl(D)(uea*)32}dz (7) 
t(0) 

where u (t) is any solution of (6) on [0, oo), and the integral is a path integral in the state space 
of (6), parametrised by t. The result is somewhat wellknown and is found, for instance, in [3c]. 

From the positive definiteness of 11 (u, t), we have 11 (u, t)=> So IJu eP*ll 2 for some constant 
So > 0, and hence, if we define 

Vl (u, t )= e- 2at ll (u, t) (8) 

it is easy to conclude that V 1 (u, t) >So Ilul[ 2 and therefore V 1 (u, t) is positive definite. Further, 
by a wellknown property of quadratic forms, there exists a constant ~ 1 such that 

11 (u, t) =< 6111u ea*ll 2 

from which 

Vl(U, t)< a l l l u l l  2 . 

Lemma 2. For any function vl (. ), the integral 

1 2 =  fro C* ~)(n(D)Vl (Z) )(m(D)vl (z) )dz 

where s is a nonnegative constant, is nonnegative for (a (.)~ JV" if 

f oo e~tlzl (t)l dt < 1/(1+(5s-(~) 
o 

with 6 s and 6~ as defined in (3) and (4) respectively. 

(9) 

Proof See Appendix 1. 
Let vl (t)=q(D)u(t). Then 12 becomes a function of u (or its subspace) and t. Define 

f' V2(u, t) = e -~t C~c~(n(D)q(D)u)(m(D)q(D)u)dz (10) 
o 

where u is any solution of(6) and s > 0 satisfies inequality (9). It is eyident that, if(9) is satisfied, 
V 2 (u, t) is nonnegative. Further, in view of the fact that q5 (.) e JV', there exists a positive constant 
6 3 such that V2(u, t )<  631lull 2 for all nonnegative t. 

Finally, let ((t) be a nonnegative (integrable and bounded) function on [to, 00) and h (t) = 
exp [-~'to((z)dz]. Assume that the integral 5tto(('r)dz< M <  oo for all t in [to, 00), and 

f' 0 < e -< lim ((z)dz __< M < oo . 
t - + o o  t o 

Then h(t) isa bounded positive function. N o t e t h a t ( ~ t t ) / h ( t ) ) =  - ((t) which is nonpositive. 

Now, let 

V(u, t)= h(t) {Vl(u, t)+k(t) V2(u, t)} (11) 

where h (t), V1 (u, t) and V2 (u, t) are as defined above. By virtue of the boundedness of k (t) and 
h(t), and the properties of V 1 (u, t), V2(u, t) specified above, the following inequality holds 

7o Ilull 2 _-_ V(u, t)__< ~a Ilull 2 (12) 

where 70 and 71 are positive constants. 
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Based on the above auxiliary results, the following lemma can-be proved. The method of 
proving it is quite straightforward and simple, and is hence omitted. (See, for instance, [3c] ). 

Lemma 3. Let V(u, t) be as defined above. Its time derivative is given by 

dV(u, t) 
dt - h(t) { -2f l  V 1 (u, t)+ [m(D) q(D)u] [n(D)p(D)u] 

- [r (D + fl)u] 2 + k (t) 49 (n (D) q (D) u) (m (D) q (D) u) + 

+ [O(t)-~]  k(t)Vz(u, t )}-~( t )  V(u, t) (13) 

which along the trajectories of (5) assumes the value (obtained by substituting x* (t) for u(t) and 
x*(t) for u(t) in (13)) 

dV(x*, t)l(5 ) dt =h(t){-2fiVl(x*'t)-[r(D+fl)x*]Z+[O(t)-~]k(t)V2(x*'t)}-~(t)V(x*'t)  

and this satisfies the inequality, for some 3 0 => O, 

dV(x*, 
t)[ < sup { [ - 2 f i - b o ,  O(t)-c~]-~(t)} V(x*(t). (14) 

dt 1(5) ~=o 

We now give the last preliminary result (due, in essence, to Corduneanu [5]) on which the 
proof of Theorem 1 hinges. 

Lemma 4. (Corduneanu [5]). I f  there exist a positive definite and decrescent form v(x, t)= 
x' P(t)x and a real valued function 2(t) on [to, oo) such that the derivative of v(x, t) along the 
solutions of (2) satisfies the inequality 

dv <= -2(t)v  
(2) 

then there exists a positive constant #o such that the solutions of (2) satisfy the inequality 

) [Ix(0ll < #o ll x (to) [I e x p  -- 2(r)dz . 
to 

Proof: See Appendix 2. 

Corollary. If T -1St~ --v for some positive constant v and for all T >0,  then 
1[ x (t)[] < #o [] x (to)[1 exp ( -  v (t - to)/2), and the system (2) is exponentially stable. 

The proof of the main result follows. 

Proof of Theorem 1. As a Lyapunov-Corduneanu function candidate for (5), choose 

V(x*, t)= h(t) { Vl (X* , t)+ k(t) V2(x*, t)} 

where V1 (x, t), V2(x*, t) are defined by (8) and (10) respectively, and h(t) is defined prior to 
Lemma 3. V(x*, t) is positive definite, radially unbounded, has continuous partial derivatives, 
and satisfies decrescent conditions by virtue of the boundedness of k (t) and h (t). (See inequality 
(12)). Its time-derivative along the solutions of (5) satisfies inequality (14). Invoking Corollary 
of Lemma 4, we conclude that hypothesis (c) implies exponential stability. Q.E.D. 

Remarks: (1) From the proof of Lemma 2, it is obvious that Theorem 1 holds when 49(.) 
belongs to a class of monotone nondecreasing functions which do not possess the odd property, 
if z 1 (t) < 0. (2) The present condition on 0 (t) is an average condition and permits large positive 
variations of a shifted 0 (t) over a finite interval ; also note that the negative lobes of the shifted 
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O(t) d ~ not  enter into the picture. (3) A geometric interpretation of Theorem 1 is desirable 
in view of its dependence on a multiplier function whose construction is not  given. The method 
of Freedman [6] can be suitably modified but lacks the elegance and simplicity of Nyquist-type 
criteria. 

Acknowledgement 

The author  is grateful to the referee for suggesting essential changes in the presentation of the 
paper. 

Appendix 1 

Proof of Lemma 2. Let n(D)v 1 (z)= al  (r). We have 

12 = e=*$(al(z))al(v)dz + e'*q~(al(z)) z,(z')al(z-v')dr dr. (15) 
o o 

Assuming that  the order of integration in the last integral of (15) can be interchanged, we get 
(after some minor  manipulations) 

I2 = fto e~*(o(al(r))al(z)dz 

-t-foZl(r')e~'Ifto (o(61(r))al(Z-r')e~(~-~') d'c] dz' (16) 

F rom the monotone  property of 4) (.) we have 

q~(Y0(Yl-Y2) > ~(Yl)-q~(Y2) for all y~ and Y2. (17) 

where ~(y , )  = j'~ (o(al)dal. 
Define ya = al (r) and Y2 = o-~ ( r -  r ' )e  -'*'. Using (17), we can write the following inequality 

Ito e~'~ dp (a x (r) ) (a l (Z)-a a ('c-'c')e-"~')dr 

> e ~ ( a ~  (~))dr - e~(a~(~-~')e-~e)d~. (18) 
o 

The last integral of (18) can be rewritten by changing the variable of integration to "c~ = z -  z': 

e~ 4~(al ( z -  r') e-~ ' )  d~ = e~(~s + ~') ~ (al (-q) e -~ ' )  dr 1 
- -z '  

But ~(o-~(z~)e-~')__<8~q~(o-~e-~')al('cl)e-~' from inequality (3)), and ~(o- l (z) )> 
8~q~ (al (~)) a~ (-c) (from inequality (4)). 

Therefore, noting that  r' __> 0 and that  a~ (r~) = 0 for z~ < 0, the right-hand side of inequality 
(18) is greater than or equal t o  

6i f~o e~Co(al (z))a~ (r)dz-6~ l~o e~q~ (o-1 (z)e-~')o-1 (r)dz. (19) 

Once again, from the monotonici ty of ~b (.), we have 

(~ e a,  =< (r)) 

which, when used in (19) and subsequently in (18), gives 

= e'~b (a~ (z))a~ ('~)dr. (20) 
o o 
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Consequently, from (16) we conclude that 12 is nonnegative if zx (z')< 0 and inequality (9) is 
satisfied. 

But 4) (-) also has the property of being odd, i.e., q5 (o-) = - ~ ( -  a) for all a ~ 0. N o w  write the 
monotone inequality (17) for ( -Y2)  and carry through the above calculation to infer 

i e C*(a(a~(z))(ax(z-z') < (1 +as -b , )  C*(a(ax(z))aa(z)dz (21) 
0 

which in association with (16) proves the lemma. Q.E.D. 

Appendix 2 

Proof of Lemma 4. Because v(x, t) is positive definite and decrescent, there exist positive 
constants a~ and ~z such that 

~1 Ilxll 2 ---- x'P(t)x < ~1 Ilxll 2 . 

Integration of the inequality 

dv =< - 2 ( t ) v  

~ -  (2) 

gives 

v(x,  t) <= V(Xo, t) exp --  (z)dz . 

C o n s e q u e n t l y ,  

cqllxlla< v(x, t)< v(xo, t)exp - 2(z)dz < c~211xol12exp 2(~)dz 
to to 

from which 

ilxl12 < c~2 ilxol12 exp - 2(z)dz 
0~1 a to / 

Therefore 

Ilxll < ~ollxoll exp - �89 2(z)dz 
�9 tO 

where #o=(c%/aa) ~, and the lemma is proved�9 Q.E.D. 
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